BASELINE RISK ASSESSMENT OVERVIEW

Dawn A. Ioven
Senior Toxicologist
U.S. EPA – Region III

WHAT IS RISK?

- Definition: probability of harm or loss
- Risk = Hazard x Exposure
- Risk can be voluntary or involuntary
- > Interpretation of risk differs for each of us
- Predictive risk assessment (U.S. EPA) vs. health study (ATSDR, Health Department)

PURPOSE OF BASELINE RISK ASSESSMENT

- Characterize current and potential future risks to human health and the environment
- Determine the need for remedial action
- Aid stakeholders in understanding potential site-related risks
- Satisfy Federal regulations requiring the assessment of risk at Superfund sites

BASELINE RISK ASSESSMENT PROCESS

- > Hazard Identification
- Exposure Assessment
- > Toxicity Assessment
- > Risk Characterization
- Uncertainty Analysis

HAZARD IDENTIFICATION

- Gather and analyze relevant site data
- Identify Chemicals of Potential Concern (CoPCs)
 - CoPCs are chemicals that may contribute significantly to site-related risks
 - Determined by comparison to generic risk-based screening levels or regulatory criteria
 - Identification process also considers essentiality, frequency of detection, and background conditions

EXPOSURE ASSESSMENT

- Analyze contaminant releases
- Identify potentially-exposed populations (current and future)
- Identify potential exposure pathways
- Estimate exposure point concentrations for CoPCs
- Estimate contaminant intakes for CoPCs (dose or exposure concentration)

Common Land-Use Scenarios

- Residential
- Occupational
 - Commercial / Industrial
 - Construction
- Recreational
- > Other
 - Agricultural
 - Trespassing
 - Maintenance (Landscaping)

Common Exposure Pathways

- Surface soil
- Subsurface soil
- Ground water
- > Air
- Surface water
- > Sediment

Common Exposure Routes

- Ingestion
 - Soil
 - Ground water
 - Surface water
 - Sediment
- Dermal contact
 - Soil
 - Ground water (bathing)
 - Surface water
 - Sediment
- Inhalation
 - Soil (outdoor vapors, airborne particulate, vapor intrusion)
 - Ground water (showering, vapor intrusion)
 - Air

Generic Dose Equation - Ingestion

Dose = $(C \times CR \times EF \times ED) / (BW \times AT)$

where: C = contaminant concentration, media-dependent

CR = contact rate, media-dependent EF (days/yr) = exposure frequency

ED (yrs) = exposure duration

BW (kg) = body weight

AT (days) = averaging time

Generic Dose Equation - Inhalation

Exposure Concentration = $(CA \times ET \times EF \times ED \times CF) / AT$

where: $CA (ug/m^3) = contaminant concentration in air$

ET (hrs/day) = exposure time

EF (days/yr) = exposure frequency

ED (yrs) = exposure duration

CF (1 day/24 hrs) = conversion factor

AT (days) = averaging time

TOXICITY ASSESSMENT

- Collect qualitative and quantitative toxicity information for CoPCs
- Determine appropriate toxicity values for CoPCs to estimate risks
 - Reference Dose (RfD)
 - Inhalation Reference Concentration (RfC)
 - Carcinogenic Slope Factor (CSF)
 - Inhalation Unit Risk (IUR)

RISK CHARACTERIZATION

Combine Exposure Assessment with Toxicity Assessment to describe potential for adverse health effects

RISK CHARACTERIZATION (cont.)

Cancer Risks

Risk = CSF x Dose

where: CSF (mg/kg/day)⁻¹ = Carcinogenic Slope Factor

Risk = IUR x EC

where: IUR $(ug/m^3)^{-1}$ = Inhalation Unit Risk, chemical-specific

EC (ug/m^3) = exposure concentration

Non-Cancer Risks

HQ = Dose / RfD

where: HQ (unitless) = Hazard Quotient

RfD (mg/kg/day) = Reference Dose

 $HQ = EC / (RfC \times 1000 \text{ ug/mg})$

where: HQ (unitless) = Hazard Quotient

EC (ug/m³) = exposure concentration

RfC (mg/m³) = Reference Concentration, chemical-specific

RISK CHARACTERIZATION (cont.)

- Unacceptable Risk
 - Excess cancer risk greater than 1E-04
 - probability of developing cancer from defined exposure is greater than 1 in 10,000
 - For non-cancer impacts, sum of HQs for similar target organs is greater than 1
 - "safe" dose is exceeded

UNCERTAINTY ANALYSIS

- Describe assumptions and significant unknowns associated with risk assessment process
- Quantitative measure of variability and sensitivity of each input parameter can be performed via Monte Carlo Analysis

NATIONAL RESEARCH COUNCIL RISK ASSESSMENT PARADIGM

Risk Assessment

Risk Management

National Research Council, 1983